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Avalanches, hydrodynamics, and discharge events in models of sandpiles
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Motivated by recent studies of Bak, Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev.
A 38, 364 (1988)], we study self-organized criticality in models of "running" sandpiles. Our analysis re-
veals rich temporal structures in the flow of sand: at very short time scales, the flow is dominated by sin-

gle avalanches. These avalanches overlap at intermediate time scales; their interactions lead to 1/f noise
in the flow. We show that scaling in this region is a consequence of conservation laws and is exhibited in
many examples of driven-diffusion equations for transport. At very long time scales, the sandpiles exhib-
it system-wide discharge events. These events also obey scaling and are found to be anticorrelated. We
derive the f'' mean-field power spectrum for these events and show that a threshold instability of the
model, coupled with some stochasticity, is the underlying origin of the long-time anticorrelation.

PACS number(s}: 05.40.+j, 05.60.+w, 46.10.+z, 64.60.Ht

I. INTRODUCTION

We live in a world full of complex spatial patterns and
structures such as coastlines and river networks [1].
There are similarly diverse temporal processes generically
exhibiting "1/f" noise, as in resistance fluctuations [2],
sand flow in hourglasses [3], and even in traffic and stock
market movements [4]. These phenomena lack natural
length and time scales and instead possess scale-invariant
or self-similar features. The concept of fractals [I] has
been successful in characterizing the geometrical aspects
of scale-invariant systems, while methods developed from
the studies of critical phenomena [5] may provide the
necessary analytical tools. In static critical phenomena,
scale invariance and self-similarity are only exhibited at a
few isolated, or critical, points in the parameter space un-
der study [5]. By contrast, many systems in nature can
exhibit self-similarity without any tuning of parameters.
For this reason, this generic behavior has been recently
dubbed "self-organized criticality" (SOC) [6].

Usually the existence of an invariance (such as the
above-mentioned self-similarity) is a consequence of a
more general underlying cause. For example, in classical
mechanics, the invariance of total momentum in a closed
system results from translational symmetry in space. To
gain some hint of such an underlying cause for SOC, let
us examine some well-known systems encountered in sta-
tistical physics that show generic scale invariance [5,7].
A trivial example is provided by the dynamics of a
diffusing field which can exhibit power-law correlation in
both space and time (and is in this sense critical). Other
less trivial examples include three-dimensional Heisen-
berg ferromagnets below their Curie temperature [7], and
the morphology of growing interfaces [8). We conclude
from these examples some candidates for possible princi-
ples governing the scale invariances in SOC: The conser-
vation of particle number is the origin of self-similarity of

the diffusing field. In the case of the Heisenberg magnet
and the growing interface, the scale invariance is due to
an infinitesimal symmetry (Goldstone modes [9] of rota-
tion for the ferromagnet, and the capillary modes of
translation for the interface).

Although magnets and growth problems have been
widely used to demonstrate fractal structures, they are
not natural systems for the investigation of temporal
complexities such as 1/f noise [10]. Since these low-
frequency fluctuations often make their appearance in
transport processes, we may hope to gain some insights
by studying such phenomena. This motivated the recent
introduction of an interesting model of dissipative trans
port, the sandpile automaton, by Bak, Tang, and Wiesen-
feld (BTW) [6]. The study reported here was inspired by
the BTW model. In Sec. II we start with a brief descrip-
tion of the model and present detailed simulation results
for "running" sandpiles in 1+1 dimension. Analysis of
the automaton and its outputs reveals various scaling re-
gimes: (1) A short-time regime in which temporal fluc-
tuations are dominated by isolated avalanches; (2) an in-
termediate hydrodynamic regime in which avalanches in-
teract to provide rich temporal structures, resulting in
1/f type noise; and -(3) an anticorrelated event regime
due to system-wide discharges. The existence of the
discharge events [11] is a unique feature of systems with
threshold instabilities. We provide a simple description
for the underlying mechanism of discharge-event genera-
tion. Similar behaviors are found in preliminary simula-
tions of (2+ 1)-dimensional models. The generic behavior
of the "running" sandpiles found in simulations actually
bears an interesting resemblance to findings in recent ex-
periments on real sand [12], and suggests some experi-
mental implications.

In Sec. III we apply the formalism of dynamical renor-
malization group (DRG) [13] to the sandpile model by
considering the fluctuation of its surface in the intermedi-
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ate hydrodynamic region. We show in detail the con-
struction of the equation of motion by recognizing the
presence or absence of various symmetries, combined
with conservation laws of the local dynamics. Scale in-
variance in this model is a consequence of the conserva-
tion law. We describe the extension of the traditional
DRG methods to anisotropic systems such as the "run-
ning" sandpile, and show how scaling exponents for its
surface can be calculated. We then established the con-
nections to the exponents a of the 1/f -noise spectra for
various transport quantities, and make a critical compar-
ison with the numerical results. A discussion of various
universality classes of SOC is given at the end.

II. THE SANDPILE MODEL

A. The automaton

Recent interest in the phenomena of SOC springs from
a series of thought-provoking numerical studies on a
sandpile cellular automaton invented by BTW [6]. The
model raises some important issues regarding dissipative
transport in open environments, and is certainly worthy
of investigation. In this section, we describe the results of
simulations of a version of the BTW sandpile with open
boundaries. The numerical study is mostly limited to the
(1+1)-dimensional case (a strip of sand), though the gen-
eric behavior found also seems to hold in higher dimen-
sions.

We consider a sandpile defined on a one-dimensional
lattice of length L. Associated with each lattice site n is
an integer variable H(n, t) representing the height of the
local sand column (see Fig. 1). Following the generaliza-
tion of the one-dimensional BTW model by Kadanoff
et al. [14],we adopt the evolution rules

H(n, t+1)=H(n, t) Nf, —

H(n+ I, t + 1)=H(n 21, t )+Nf

if and only if H(n, t) H(nial, t—))b. As reported in
Ref. [14], the scaling behavior of the system is indepen-
dent of the numerical values of Nf and 6 as long as

Nf ~ 2 and 5 ~ 2Nf in order to exclude certain pathologi-
cal cases. In our study, we use Nf =2, and 6=8. The
boundary at n =0 is kept closed, while the boundary at
n =L is open, i.e., H (0, t) =H ( 1, t), and H (L + 1, t) =0.

, ( H(n)

I

L

FIG. 1. A possible configuration of the (1+1)-dimensional
sandpile automaton.

The system can be started from uniform or random ini-
tial conditions. The transport process is initiated by ran-
domly depositing sand grains into the system at a rate
J;„.After some time, the system reaches a steady state in
which the input is on average balanced by the drainage at
the open end. The activity of the system is then moni-
tored by recording the output current J(t) (the number of
sand grains leaving the system) and the instantaneous en-
ergy dissipation rate E(t) (the total number of transport
activities at each time step).

We first briefly summarize previous results of similar
simulations. BTW performed numerical studies of the
sandpile model in the limit of zero deposition rate, i.e.,
J;„~0+.In this limit, the response to a single addition
of a sand grain is characterized by identifying the size
[s = 1 E (t)dt] and duration (T) of the "avalanche" result-

ing from the addition. In the steady state, BTW
identified the signatures of criticality: power-law scaling
in the distributions of the quantities monitored, i.e.,

D(T)=T ~F(T/L ),
D(s)=s' 'G(s/L ),

(2)

where D (X) is the distribution function for X. Finite-size
scaling then yields the dynamical exponent 0., and the
"fractal dimension" of avalanches, Df. In fact, the distri-
bution functions may well be more complicated, e.g.,
multifractal, as indicated in Ref. [14]. But these simple
scaling laws work well for s &(L. (The multifractal as-
pects will be discussed later ).

Tang and Bak (TB) [15] suggested that the scaling be-
haviors observed can be thought of as critical phenomena
with the average output current (J,„,) being an order
parameter. The sandpile model adjusts itself (self-
organizes) to a critical slope at which (J,„,)~0+. TB
also pointed out that if (J;„)is finite, then the large
avalanche clusters overlap (much like a percolating sys-
tem beyond the percolation threshold), resulting in a
length scale g-J " and an associated time scale —P,
above which the power-law distributions are cut off. The
existence of such scales would apparently destroy scale
invariance and criticality.

Aware of the above arguments, most subsequent stud-
ies [14—19] focused on the special limit J;„~0+by add-
ing sand grains one at a time and allowing the system to
completely relax between additions. Although many in-
teresting scaling behaviors were found, there are a num-
ber of drawbacks associated with this particular way of
probing the system. For instance, as the interval between
sand additions varies, time is not well defined in these
studies, and temporal fluctuations of transport quantities
are constructed artificially by randomly superposing sig-
nals taken from the relevant distribution functions. The
resulting outputs exhibit very smooth fluctuations and no
sign of 1/f noise [20,21]. This is somewhat disappoint-
ing since a natural explanation for 1/f noise was one of
the early motivations of SOC studies. Another shortcom-
ing stems from the very insistence on the limit J;„—+0.
By the definition of the steady state ( (J,„,) = (J;„)), the
order parameter (J,„,) is indirectly tuned by (J;„).If
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In the following, we describe the simulation results for
"running" sandpiles in which sand grains are deposited
with probability p =J;„/Lper site per time step, and the
total input current J;„is fixed for different system sizes.
(The reason for the choice of dependence on size will be

A

B

0 L

FIG. 2. One-dimensional avalanche processes represented in

a space-time diagram. The two avalanches initiated at points A
and B are considered independent because they do not overlap
in space time. The two initiated at points C and D, however, do
overlap.

the existence of criticality depends so sensitively on a
very small input rate (or driving force), it becomes inappl-
icable to many systems in nature (e.g., water flow in
rivers [22] and electron flow in resistors [2] that exhibit
1/f-type noise in the presence of obvious driving forces.
One conclusion of this numerical study is that in fact crit-
ical scaling is not destroyed by a finite driving force; rath-
er, we show that interesting temporal fluctuations such as
1/f noise only appear when avalanches overlap in the
presence of increased external driving force J;„.

Let us first quantify how small J;„must be for
avalanche clusters to overlap each other: If we mark all
the sites where the local slope exceeds the transport
threshold, then an avalanche in the one-dimensional
model shows up as a parallelogram in the space-time
plane (Fig. 2). The width at each time t is the number of
active sites E(t). (This is also the instantaneous rate of
energy dissipation since the particles lose potential ener-

gy every time they are transported. ) The length of the
parallelogram is the avalanche duration T, and the total
shaded area is the total size of the avalanche cluster s.
Two clusters can be distinguished as long as their active
zones never overlap. If the probability of initiating an
avalanche (the local deposition rate) is p per site, then
clusters do not overlap if sp (1, where s is the average

Df (3—~)
size of the clusters. For a system of size L, s =L
from the distribution function Eq. (3). It is found in Ref.
[14] that r=2 and Df =1 for the one-dimensional (1D)
sandpile, giving s -L and the overlap limit

(4)

given shortly. ) By changing the magnitude of the driving
force J;„,we can probe both below and above the
avalanche-overlap limit, Eq. (4). It is shown that interest-
ing temporal fluctuations such as 1/f noise appear only
for driving forces exceeding the limit set in Eq. (4).

B. The "running" sandpile

In this simulation, discrete "sand grains" are randomly
added to the system. Time is defined by an external
clock. At each time step, there is a small probability p of
depositing a particle to each site, i.e., H(n, t +1)
=H ( n, t) + 1 with probability p. The configuration H ( n )

is simultaneously updated according to Eq. (1). (A ran-
dom asynchronous updating procedure has also been test-
ed and does not change the generic behavior. ) There is
an average deposition rate J;„=pLfor a system of size L.
We let the system evolve for a long time until the steady
state is reached, i.e., {J;„)=(J,„,). In steady state, we
record the time series for the output current J(t) and the
instantaneous energy dissipation E(t) as previously
defined. We then take the power spectra SJ(co) and
Sz(co) for the output series, where

Sx(co)=f dt f dre ' 'X(r)X(t+r) .

If the avalanches do not overlap, then according to
BTW, the resulting time series should be equivalent to
the random superposition of single avalanches according
to the relevant distribution functions in Eqs. (2) and (3).
In particular, the power spectrum of the output current is
predicted [20,21] to have the form SJ(co)-co iF(cgL )

where p=3 —y for y ) 1, p=2 for y & 1, and F(x) is a
cutoff function due to the finite size. Thus 1/f-type noise
may arise as a consequence of random superposition of
individual avalanches, provided that the avalanche life-
time distribution does not have too long a tail. However,
one does not expect temporal correlations beyond a time
scale set by the duration of the longest avalanche, i.e.,
S(co)=const for ~ &L

This is indeed the case when we directly analyze the
output time series for systems subject to very small driv-

ing forces: To ensure that the avalanches do not overlap,
we deposit at an average of one grain every 1000 time
steps to a system of 100 sites (for which the largest
avalanche lasts =100 steps). Figure 3 shows the result-
ing power spectra from which we obtain the exponents

pz =4 and f3J =2. Clearly, the power spectra do not ex-
hibit 1/f type broadband n-oise. This result agrees with
other recent studies [20,21] in which the power spectra
are obtained directly from the distribution functions as-
suming random superposition of signals.

As many transport systems in nature do have non-
negligible driving forces, we next investigate the robust-
ness of the scaling behaviors found above by exciting the
avalanches more frequently. Following TB [15],one may
expect the cutoffs to the scaling regions in Fig. 3 to move
to higher frequencies (or shorter times) due to the overlap
of large avalanches, so that in the large-input-rate limit,
the scaling region is drastically reduced and scale invari-
ance is lost in the macroscopic limit. However, when we

repeat the simulation at higher input rates, we obtain the
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interesting series of power spectra shown in Fig. 4. While
the cutoff times are indeed reduced due to more frequent
avalanche overlaps, new scaling regions with S(co)-co
seem to emerge at a time scale beyond the cutoff.

We next describe a systematic study of the behavior of
the sandpile in the overlapping avalanche limit by exam-
ining the size dependence of the power spectra. At this
point, it is important to mention that the sandpile model
in Eq. (1) has a limited maximum output capacity of Nf
grains per time step independent of the system size.
Driving the system beyond this limit will saturate it and
give meaningless results. Therefore for the following
study, we chose to fix the input rate at J;„(Nfindepen-
dent of the system size. This implies that the local depo-
sition rate p =J;„/Lis size dependent. It is used here for
the purpose of illustrating the behavior of flow beyond
the avalanche overlap limit. Using J;„=0.1, the resulting
power spectra for systems of sizes ranging from 25 to 800
are shown in Fig. 5. The power spectra exhibit a variety
of different behaviors depending on the time scale of ob-
servation. They are qualitatively divided into three non-

trivial regions as sketched in Fig. 6 and the relevant ex-
ponents are listed in Table I. We now describe each re-
gion in detail.

1. The single-avalanche region

In this high-frequency region (I), the observation time
is of the order of the avalanche duration. The power
spectra are described by the scaling forms,

SE(co,L ) =co F(coL ) and S~(co,L )

=to L F(coL ) where PE=4, Pz=2, and cr'=0. 5

[23]. Note that SJ decreases with the system size L in
this region. [The vertical axis of Fig. 5(b) is scaled by
L .] To gain some understanding of this scaling region,
we directly examine the time series. Figure 7 shows some
typical time series of the instantaneous energy dissipation
E(t) at the time scale of region (I) for systems of size 25
and 800. We recognize the activities shown to be the su-
perposition of individual avalanche signals. The smooth-
ness of the time series is a direct result of addition of
many random signals; this is reflected in the large value
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FIG. 3. Power spectra for energy dissipation and output
current of a 100-site system, with p = 10

FIG. 4. Power spectra of (a) the energy dissipation and (b)
the output current for a one-dimensional sandpile (I. =100)
with deposition rates p =10 ', 10, and 10 ' per site. Notice
that a new scaling region emerges as we increase the input rate.
[Dashed lines indicate S(co)-co '. )
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T~ ~I. , where the dynamic exponent cr is typically less
than unity for a decelerating process. To put it in the
perspective of a real avalanche process such as an earth-
quake, T~ could be the duration of one quark which may
last seconds to minutes. While the way energy is released
during one quake is certainly worthy of study, we need to
look at longer time scales for purposes of investigating
long-time fiuctuations such as 1/f noise observed in river
flow, resistors, and in aftershocks after major quakes.

2. The interacting avalanche region

FIG. 5. Power spectra of the one-dimensional sandpile in Eq.
(1) for (a) the energy dissipation E(t), and (b) the output current
J{t). Note that the vertical axis of (b} is scaled by L ' [Dashed.
lines indicate S(co)-co '. ]

of the exponent Pz. We also see from Fig. 4 that the
high-frequency scaling behavior for systems with large
deposition rate is the same as that with small deposition
rate for which avalanche overlap is not possible. We
therefore conclude that this region corresponds to the
random superposition of independent avalanches. Al-
though the form of power spectra in this region is rather
simple, the scaling behaviors of the distribution functions
themselves are highly nontrivial [24—26] and challenge
theoretical understanding.

The upper cutoff' time T„for region (I) is not very long
even if the avalanches never overlap; it has an upper
bound of the maximum lifetime of one avalanche, i.e.,

We now come to a major result of this numerical
study. Far from being uncor related as previously
thought [15],the transport quantities exhibit 1/f noise at
time scales beyond the maximum duration of individual
avalanches. In this region (II), the power spectra can be—a~fitted to power laws of the form Sz(co) =co ". The ex-
ponents are determined to be aE = 1.0, and a~=1.0 (us-
ing the results of L =400, 800 systems in Fig. 5). The
cutoff time Ttt for region (II) (see Fig. 6) is expected to be
related to the system size L through another dynamical
exponent, z [27]. This exponent cannot be determined
adequately from the existing data, but may be accessible
via analytical treatments such as the one given in Sec. III.

A more intuitive feel for this region is obtained by
directly examining the time series coarse grained to the
relevant scale, as in Fig. 8, for a system with 800 sites. It
is clear that this series is characteristically diFerent from
that shown in Fig. 7, as the fluctuations are more erratic
(less smooth), but not random —signature of 1/f noise.

TABLE I. A summary of scaling exponents found in various regions for the (1+1)-dimensional
sandpile model. The exponents are defined in Fig. 6.

Exponents for current
Exponents for energy

Region III

QE= 1.0

Region II

aJ =1.0
nE =1.0

Region I

pJ =2.0
pE =4.0
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Since the time scales of these fluctuations are long com-
pared to the maximum lifetime of single avalanches, we
conclude that the correlations in this part of the spec-
trum must arise out of interactions among the
avalanches. In this way, this region is reminiscent of af-
tershocks in earthquakes and shock waves in hydro-
dynamics (and is sometimes called the hydrodynamic re-
gion). It is therefore natural to resort to continuum field
theory for a possible description of this behavior. As this
is the relevant region for studies of I/f noise, we shall
provide a detailed analysis in Sec. III. It will be shown
that the existence of power-law scaling in the hydro-
dynamic region is a consequence of the conservative dy-
namics present in the model. Again, we put these time
scales into perspective by making analogies with earth-
quakes: aftershocks and correlations of quakes along a
faultline can exist at time scales ranging from minutes to
years.

400—
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FIG. 8. Time series for instantaneous energy dissipation E(t)
of the one-dimensional sandpile with L =800. At this time
resolution, correlation among avalanches can be seen.
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3. The discharge-event region

When we look at even longer time scales, we encounter
avalanches whose active zones are of the order of the sys-
tem size (see Fig. 9). These great events sweep through
the entire system and are thought to be system-wide
discharge processes. The origin of discharge events has
been studied by Carlson and Langer in a model of earth-
quakes [11],and has been alluded to in Ref. [14]. It can
be traced back to a conservation law which we illustrate
in the context of this model. For a sandpile of size L, the
average input rate is fixed (i.e., (J;„)—1) while the scal-
ing of output current can be determined from Fig. 5 to be
J,„,-L at short time scales. The sandpile is there-
fore accumulating particles at a constant rate. This pro-
cess becomes impossible to ignore when the number of
particles accumulated reaches the order L2 (at which
point the macroscopic slope of the sandpile is changed).

350—
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A

FIG. 7. Time series for instantaneous energy dissipation E(t)
of the one-dimensional sandpile with (a) L =25, and (b) L =800.
Individual avalanche events can be identified at this time resolu-
tion.

FIG. 9. A space-time diagram for a discharge event initiated
at point A.
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Thus beyond a time scale Tc (see Fig. 6) of the order L,
a system-wide discharge process is bound to take place
[28]. However, we have not had enough statistics to
determine the precise L dependence of discharge-event
sizes. Here we can only place a bound in the onset time,
L ~ T, ~ L . (Note that from Fig. 9 one obtains a
discharge duration of the order L for a great event; this
should not be confused with the correlation time between
great events. ) The scaling behavior of the great events
will be discussed in detail in Sec. IIC. It is important to
recognize that the accumulation of particles at short-time
scales is possible in the sandpile model due to the thresh-
old nature of the dynamics which provides a multitude of
metastable states. These behaviors should be contrasted
with more conventional viscous fluid flows which do not
exhibit the discharge activities observed here.

The effect of large-scale discharges can also be detected
if one only looks at the avalanche distribution function
D(s). Because the large s part of the distribution is now
subject to a different process and weighted more, we do
not expect D (s) to obey the simple, homogeneous scaling
form in Eq. (3). As it turns out, the large avalanche end
of the distribution is also scale invariant. Furthermore,
the small and large size ends of the distribution D(s)
must be related. It is found numerically [14] that the en-

tire distribution function is well described by a multifrac-
tal scaling form, though the implication of this remains
to be understood.

Although the description of various scaling regions
given above is based on results of the 1D sandpile, its
generality goes beyond 1D systems. We have also per-
formed the generalization of the rule in Eq. (1) on two-
dimensional lattices. Due to the presence of anisotropy, a

systematic study in 2D is much more demanding and has
not been pursued here. In Fig. 10, we show some typical
power spectra for E(t). It appears that the qualitative
behavior is the same as those described for the 1D system
(Figs. 5 and 6). Power-law scaling is clearly seen in re-
gions I and III, though much larger systems are needed
to determine the behavior in the intermediate hydro-
dynamic region.

The sandpile thus behaves like a complicated filter
which takes a random white noise input J;„(t)and con-
verts it into a highly correlated output J,„,(t)
= f ' dt'G(t —t')J;„(t'),where G is a delayed response

function. The usual constraints of a causality and conser-
vation then put strong constraints on the power spectrum
SJ(co)=

~
G(co)

~
(J,„),. For example, J,„,=J;„implies

G(0)=1, and SJ(co) must approach a constant value,

(J;„),=p as co~0. Also, since the output current is al-

ways finite, i.e., J,„,(t) N&, the integral f o ddJ(co) is

also bounded. We thus find other connections and con-
straints between the different regions in Fig. 6.

]ooo

10—

o. 1

o. 01

o. 001
10 10 10 ]o' ]o'

FIG. 10. Power spectrum for the energy dissipation E(t) of
several two-dimensional lattices. The choice of narrow strip
geometry is due to the presence of strong anisotropy (see Sec.
III).
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PE =gz = 1; the positive exponent indicates the presence
of anticorrelations which persists for a long time. For in-
stance, anticorrelation is present for a 25-site system up
to a time T-10 . Where might such long-term correla-
tions (memory effects) come from?

Since these events are system-wide discharges, we ex-
amine the time evolution of the macroscopic profile of
the sandpile. Figure 11 illustrates a snapshot of a typical
profile which is rather smooth and linear. We can then
follow evolution of such a profile by simply tracking the
time dependence of its slope (or the height of the first
column). In Figs. 12(a) and 12(b), we show the slope
movement coarse grained to below and above the onset
time of the discharge. Clearly, the slope is quasistation-
ary at small time scales, but executes stochastic motion at
large time scales. Therefore we see that the anticorrelat-
ed region is related to the motion of the overall landscape
of the system. This motion is in turn a consequence of
particle accumulation as already mentioned.

To uncover the underlying mechanism of scaling in the

C. Scaling of the discharge events

Let us return to the power spectrum shown in Fig. 5.
It can be seen from the low-frequency behavior of the
small systems that temporal fluctuations in the
discharge-event region are not uncorrelated. The power

spectra can be described by Sz(co) —co where&x

0—
I

25
I

50
I
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I

Ioo l25

FIG. 11. A typical height profile for a sandpile (L =100) in

steady state.
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anticorrelated discharge-event region, we analyze the glo-
bal behavior of the system in the long-time limit by only
keeping track of the total number of particles (N) accu-
mulated. Coarse grained to the appropriate time scale of
the discharge-event region, the system receives an aver-
age input of one unit per time step plus a small fluctua-
tion r(t) which is a Gaussian noise. We make a simplify-
ing assumption that the system outputs a fixed amount of
particles (Nf ) once N reaches a certain threshold For the
sake of illustration, let Xf =10 units. Then on average
there is one output pulse every ten time steps. The in-
clusion of the small noise r(t) in the input can shift the
output series: Suppose X is at a value of t =0+ above the
threshold at some time, then there is immediately an out-
put pulse, and we expect another output pulse to follow
after ten time steps. However, if the magnitude of the ac-
cumulated noise within this time period is —5 where
5) e, then N will be slightly below the threshold after ten
time steps, and there will not be an output pulse until the
11th step. Similarly, if the random noise changes N from
slightly below to slightly above the threshold in those ten
time steps, the output pulse is advanced by one time step.

It is important to recognize that as long as the ampli-
tude of the fiuctuation r (t) is small, it is extremely unlike-

ly that the output sequence will have two consecutive de-
lays or advances. This point may be better appreciated
graphically: The modulation of the output sequence by a
small noise is illustrated in Fig. 13. The output is delayed
or advanced by one time step if the accumulated noise (a
random walker for simple white noise) is on different
sides of the origin between two output pulses. A simple,
coarse-graining procedure transforms the actual output
profile J(t) to J(t) as shown in Fig. 13(b). The function
J(t) more clearly represents the relation between the out-
put sequence and zero crossings of the random walker:
J(t)=+1 for upward crossings, and J(t)= —1 for down-
ward crossings. It is apparent from Fig. 13 that the out-
put sequence for this simple one-site model is anticorre-
lated: Every positive pulse is followed by a negative pulse.
%e can quantify this anticorrelation by calculating the
correlation function (J(0)J'( t ) ) . Take J(0)= + 1, the
correlation function may be calculated by noting that the
time series J(t) can be written as J(t)=dJ'(t)/dt (see Fig.
13) where
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I I

and r(0) =0, r'(0) )0) by the choice of J(0). So we have
(J(0)J(t) ) = (d /dt)( J'(t) ) where (J'(t) ) is simply the
probability of a random walker's return to the origin
after a long time, which is well known (-1/&t ). Thus
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FICx. 12. Time dependence of the height of the first column
at time scales (a) below and (b) above the onset time (T&) of
discharge events.

FIG. 13. The output sequence J(t) of the one-site system due
to a random noise shown below it. The coarse-grained output
series is obtained from J(t)=g;. ,J(t+i)/~ J;„,where r=10-
is the average number of time steps between two output pulses
and J;„=1.J(t) can also be thought of as the time derivative of
the function J'(t) shown at the bottom.
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the correlation function is (J(0)J(t))—t ~, yielding a
power spectrum of $(co)-cv'~ . The behavior of such a
one-site system has been simulated, and the power spec-
trum obtained (Fig. 14) is cv' as calculated. (The an-
ticorrelation is eventually cut o6' beyond a time scale
when the random walker wanders to a value of the order
of the input size). For the real system under study, the
output pulse is of course not limited to a fixed size. A
power-law distribution in output pulse sizes will then
modify the exponent of the co' anticorrelation.

The above analysis suggests that the occurrence of
great events should be common to a wide variety of
driven systems that possess threshold instabilities. In
particular, we note that some indications of the anticorre-
lated scaling behavior are seen in the power spectrum of
the real sand fiow [12]. As reported in Ref. [12], real
sand shows relaxational oscillation between two angles
(8;„and 8m,„)when it is randomly added from above.
This bears some superficial resemblance to the behavior
of the one-site problem just considered; but upon more
careful inspection the two systems are believed to be very
different. According to Ref. [12], the slope of the real
sand is reset to t9;„oncea threshold is exceeded, whereas
in the one-site system, a fixed amount is output so that
the system still retains some memory of the previous state
after discharge. The above analysis shows that it is in
fact this memory retention that is responsible for the an-
ticorrelated scaling. Long-term anticorrelation is not
possible if the slope is reset after each discharge event.
Therefore, if an anticorrelated scaling region indeed ex-
ists for the real sand flow, it suggests that a small amount
of' memory retention may exist in the real sandpi1e after
all, in which case the automata may actually give a fair
description of very large sandpiles. Clearly, much better
experimental knowledge of the low-frequency end of the
power spectrum is needed if any concrete correspondence
is to be made.

III. FIELD THEORY OF DISSIPATIVE TRANSPORT

A. The driver-di8'usion equation

We now consider the "running" sandpile model of Sec.
II and investigate its behavior in the region of interacting
avalanches by using the methods of hydrodynamics. To
study this region we first coarse grain the system both in
space and time to remove the small distance cutoffs (sin-

gle avalanches) and obtain a coarse-grained landscape
H(x, t). The coarse-grained unit cell length lo and unit
time to must be large compared to the length scale at
which deceleration of individual avalanches takes place.
(According to the finite-size scaling summarized in Fig.
5, we need lo-to) T„-L'~.) Also, as suggested from
the numerical study in Sec. II, we assume the average
landscape of the sandpile to be flat and stationary in the
hydrodynamic region. (The assumption will be checked
later for self-consistency. ) We may now consider the
avalanche dynamics from the point of view of fluctua-
tions of the sandpile surface [29].

We define a dynamical field h (x, t ) which is the
difference between the coarse-grained landscape H( t)x

10

s
10

V5

10'
10 10 10 10

FIG. 14. The output power spectrum of a one-site system.
The evolution rule used is as in Eq. (1) with N~ =10. The input
used is J;„=1+r(t) where r(t) is randomly distributed in the in-
terval —0. 1 to 0.1.

The left-hand side of the equation represents the conser-
vative (and deterministic) relaxation that follows the ad-
dition of particles, while the right-hand side represents
the external sources and sinks in terms of a random input
function g.

Next, we need a constitutive condition to describe the
transport current j(h). For the complex nonequilibrium
problem at hand there is no easy way to calculate j(h),
but it must satisfy the underlying symmetries of the prob
lem. Thus to construct the most general functional form
possible for j(h) we closely examine the presence or ab-
sence of various symmetries. The anisotropic boundary
conditions of the automaton pick out a direction of trans-
port T. Let x~ =(T.x)T and x~=x —

x~~ denote directions

H(x, i)
lk

h(x, t)

x

FIG. 15. The height function h(x, t ) is defined as a deviation

from the flat steady-state sand profile. Gravity drives sand

along the transport direction T.

and the fiat average profile Ho(x)=AD(L —x), as shown
in Fig. 15. The operation of the sandpile automaton con-
sists of a driving action (addition of sand), and a subse-
quent relaxation according to Eqs. (1). We now note the
important constraint that the relaxation dynamics during
an avalanche does not change the number of particles,
while the driving operation violates this conservation by
adding particles randomly from the outside. Based solely
on the above condition, we conclude that the equation of
motion must take the form

Bh +V j(h)=q( xt) .
at
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parallel and perpendicular to T, respectively. Then
the system has (a} rotational invariance in x~ and transla
tional invariance in xj, x~~, but it (b) lacks re+ection sym
metrics in xll and in h because of the presence of a pre-
ferred direction T. However, with respect to the average
flat surface "bumps" move downhill while "voids" move
uphill as illustrated in Fig. 16. We therefore have (c} the

joint re+ection symmetry h ~—h and x
~~

—x
~~. Finally,

we assume that (d) the system lacks translational symme
try in h as h measures the deviation from the average
slope which is fixed once the input rate, the threshold,
and the box size are specified. This last assumption is not
always valid. In particular according to the evolution
rules in Eq. (1), the current only depends on the
difference between heights, and hence invariant under a
uniform shift in h. A mechanism for spontaneously
breaking this symmetry was recently suggested by Grin-
stein and Lee [30], and relies on the discreteness of the
heights. For real sandpiles long-range interactions cut off
by the box edges may provide such a mechanism. Our
justification is also partly a posteriori based on the numer-
ical profile in Fig. 11. Since the current is a vector, it
must be constructed from V and T, the only vectors in
the problem by (a) and (b). Assuming (d) it can depend
directly upon h, and (for local processes) takes on the
general form

j(h)= —a, Vh —azV(h ) — . —a„V(h")
—b„V(Vh )

" c„V(V—h )"+ . . +A, ,hT

+ A,2h T+ +A,„(h")T+v„(Vh ) "T

+w„(Vh)"T+

We are interested in the large-distance (k ~0) proper-
ties of the system. In this limit, the term a2 can be
neglected compared to A,2 because the former involves an
extra spatial derivative. Similarly, the terms b„and c„
are ignored when compared to U„and m„,respectively,
and the v„and w„are themselves small compared to the
A,

„

terms. As to the remaining terms A.„h"T, we expect
the fluctuations of h to be small if the surface is flat as ini-
tially assumed. (The self-consistency of this assumption
can be checked when the scaling behavior of h is calculat-
ed. ) Therefore higher-order terms in h are also ignored,
and we have

j(h) = —a, Vh+A, ,hT+A, ,h'T,

to leading order. Of course the terms with a, and A,2 are
also small compared to the A.

&
term, except that the latter

forbidden by the joint inversion symmetry (c). Of the two
remaining terms, A,z

——1,/2 is the driving force propor-
tional to the slope of the average flat surface; this term
originates from the local transport dynamics such as the
nonlinear friction or the threshold dynamics. The Th
term is the linear current present in any diffusive process;
a, can be interpreted as the surface tension for the sand-
pile. Due to the anisotropy in (b), the surface tension is
in general a tensor v, with components vll and vj in direc-
tions parallel and perpendicular to T. We thus arrive at

A g 2A.j=—vj Vjh vll~llhT+ h T
2

(6)

and the equation of motion [Eq. (5)] becomes

in the hydrodynamic limit. Here D is a measure of the
strength of the noise; it is related to the local deposition
rate p of Sec. II by D ~p . Note that D may be depen-
dent on the box size I. due to the size dependences of p
and the coarse-graining units lo and to. Such explicit size
dependence (forced upon us by the output limitation of
the sandpile automaton) somewhat complicates the essen-
tial scaling studies. We shall initially ignore such compli-
cations and analyze the scaling behavior of Eqs. (7) and
(8). The considerations that lead to these equations are
generally valid for dissipative transport in open systems,
and may also describe, for example, the flow of current
along a wire with random sources and sinks.

Before we present a detailed analysis of Eq. (7), we em-

phasize that its most important feature is the absence of a
relaxation term of the form —h/r. Such a term intro-
duces a characteristic time ~, and a corresponding length
I =(v /v)', and destroys scale invariance. It is the con-
servative nature of the deterministic dynamics that rules
out this term in Eq. (7).

Equation (7) is familiar in the context of driven
difFusion, and has been studied [31] in the presence of a
conservative noise (to be discussed in Sec. III D). In the
present case, the addition of sand particles from outside
destroys the local conservation rule. Although in steady
state the balance of drainage from the boundaries and the
flux of the added particles implies (ri(x, t )) =0, the ran-
domness in the deposition process is mimicked by an un-

correlated Gaussian noise with the leading moment

( ri(x, t )ri(x', t') ) =2D5"(x—x')5(t t '), —

B. A dynamical renormalization-group analysis

FIG. 16. The joint inversion symmetry h ~—h and
x~~~ —

x~~.
. +h (filled block) moves down the slope while —h

(void, shaded block) moves uphill.

To study the scaling of fluctuations in the hydro-
dynamic region, we do a dynamical renormalization-
group calculation [13]. We calculate the two-point corre-
lation function ( [h(x, t) h(x', t') )—:C(x——x', t —t').
In the absence of any nonlinearity, Eq. (7) is simply a
diffusion equation with anisotropy. Its solution is
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C(x, t)=—x FD 2 d v((tII, Il

1/2
V(( Xg

vg
(9)

where I' is a scaling function with usual limiting behav-
iors, and as usual we have generalized the problem to d
dimensions (d is the dimension of the surface, i.e., d =1
for the automaton in Sec. II). Nonlinearity can be includ-
ed perturbatively, and its effect is a modification (i.e., re-
normalization) of the parameters D, vll, and vi, for exam-
ple,

D"=D[l+, (A,x
II
)+ z(A'x

II
) + ] (10)

t
C(x, t)-x rF x"xf

where the exponents y, z, and g characterize the rough-
ness, dynamic scaling, and anisotropy of the surface, re-
spectively. In the absence of nonlinearity, the "free"

with similar expansions for vll and v~. Here @=4—d,
and x

II
appears by dimensional analysis, so that the com-

bination Xx
II

is dimensionless. For renormalizable
theories, series such as Eq. (10) can be summed to yield
scaling forms. The parameters become

D"=D[1+a,(Axll)] ',
ll

=vll[1+ z(AX
ll
)]

[I+,(~";, )]

to first order in e. Inserting the above in Eq. (9), we find
that in the hydrodynamic limit (xll ~ ~) the correlation
function has the simple form

bx =v bI' 2Q2Q+v bX

b2X —
&g I, 2+b —~2 —~d —&~0~2 —&~2

where Eq. (8) is used to determine the scaling of ri. Thus
the naive scaling for these parameters is

vll b VI( ~

v~~b v~,z —sg

b++ -'X,

D z —2g —g(d —1)—1

(12)

(ii) Perturbative calculation We nex. t calculate the per-
turbative corrections to these parameters, to leading or-
der in the nonlinearity. In terms of the Fourier modes

h(x, t)= 1 1 dtod"k h(k to)e'
2ir (2ir)d

Eq. (7) is

diffusion equation yields exponent values go=(2 —d)/2,
zo=2, and $0=1 from Eqs. (9) and (11). Finding the ex-
ponents for the nonlinear equation requires knowledge of
the entire perturbation series in Eq. (10}. The method of
renormalization group shortcuts this process by making
the hypothesis [32] that C(x, t) indeed scales as in Eq.
(11}. Then the series of operations outlined below leads
to the exponents y, z, and g.

(i) Naive dimensions A. change of scale xll bxll is ac-
companied by t~b't, xj~b~xj, and h —b+h. After
rescaling, Eq. (7} transforms to

f fd qdl h(qi )h(k —
q (13}

Here

1
Go(k, to) =

(i)(k, co)i)(k', co') ) =2D5 (k+k')5(co+to') . (14)

is the bare propagator, and the Fourier-transformed noise
spectrum is

Equation (13) is a convenient starting point for a per-
turbative calculation of h(k, co) in powers of A. as indicat-

ed diagrammatically in Fig. 17. The graphic expansion is

quite standard [33,34] with: indicating the propaga-
tor Go, and X depicting the noise g(k, co). The averaging

over stochastic noise is performed using Eq. (14), and the
renormalized response function G (k, to } [defined by

h(k, co)=G (k, co)g(k, to}] is given perturbatively in Fig.
18(a). The lowest-order (one-loop) correction is

2

G (k, co)=Go(k, to)+4 — 2DGO(k, m) fdpd qiklli —
qll Go ——q, ——

IM Go —+q, —+p
2vr

XG ———q, ———p +O(A, },k co 4
p
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k Q)+q
k fj)

X/'

h(k, co)

g(k, 03)

x +
6 (k, m) G, (k, co) -q, co—p)

k, co k, Gl

+ 4 — ~ -~ + 0(~')k ~ co k m- q

(a)j, clq dp 9 (k-q, co—p. )
k, o) -k, - o) k, o) -k, - I + k, + 0&~')

FIG. 17. Diagrammatic representation of the nonlinear in-

tegral equation (13) and the perturbation series that results from

it.

where the combinatorial factor of 4 represents possible
noise contractions leading to Fig. 18(a).

Clearly, the above correction to the propagator is pro-
portional to kll' For sy~~et~y ~easo~s odd po~e~s of kll
and k~ cannot survive after the spherical averaging in

jd q. The leading k dependences are therefore of the

orm II' k II' and k Ilk' of which only the k
II

term is kept
since we are interested in the hydrodynamical limit of
k~0. After performing the integrals (see Appendix A),
we have to O(k ),

k
Go (k, O) =Go(k, O)+ Go(k, O) —

vllk ll
u

32 E'

where a=4 —d and we have defined an effective coupling
constant

g&D 2Sd
3/2 3/2 (2 )d
II

The propagator can now be written as

G (k, O)= 1

v k +v"k —ia)
II il

with the effective surface tension

(16)

and v~ =v~. Note that there is no correction to vt to
leading order because the nonlinearity is proportional to
kII. In fact v~ is not renormalized to any order of the per-
turbation expansion because the perturbative corrections
are always proportional to

All
as shown in Fig. 18(a).

A renormalized noise spectrum D (k, co) can also be
defined from

k
1+k

2 2

—- k1

2 2

+ 4

(b)

+4
r

+4

(c)

FIG. 18. After averaging over the noise, the perturbation
series of Eq. (13) can be reorganized to describe (a) a renormal-
ized propagator, (b) a renormalized noise spectrum, and (c) a re-
normalized vertex function (or interaction parameter).

3n (bio)
=vll(bio)' ' 1+ u +O(u')

We apply the rescaling operator and obtain

b vll(b)=vll(bio)' ' z —2+ u(bio)'

The last parameter to consider is the nonlinearity
coefficient A, which has a contribution from the graphs in
Fig. 18(c). A one-loop calculation gives a null result. In
fact this result is also true to all orders of the perturba-
tion series. The nonrenormalizability of X is due to a
Galilean invariance [34] in the equation of motion. Equa-
tion (7) is invariant under the reparametrization

xII
—

xII
—5i,t, t~t if h ~h+5. Note that the parameter

A, appears both as the coefficient of the nonlinearity in Eq.
(7) and as an invariance factor relating the x

ll
and t

reparametrizations. From this symmetry, it follows
[33,34] that any renormalization of the driven-difFusion
equation that preserves Galilean invariance must leave
the coefficient A, unchanged, i.e., A, =A, to all orders.

(iii) Recursion relations. Let us find the rescaling be-
havior of the surface tension vII. Define an observation
length scale kII

' =bio where lo is the microscopic cutoff
length. Then the dimensionless renormalized surface ten-
sion is

—R(b) vR(bi )z
—2

II

(b( —k, —co)h(k, a)) ) =2G "(k,co)G ( —k, —co)

XD "(k,co) . (17)
We assume the renormalizability of the theory and re-
p'ace vll by vll ' Then vll(bio)' vll (b), and

Because the vertex is proportional to kII, the leading or-
der graph [Fig. 18(b)] is of order ill which can again be
rieglected in the hydrodynamic limit and the coefficient D
is not renormalized to all orders in the perturbation
series, D =D.

(vll ) (vg )' ' (2~)

(since we already have A, =A, , D =D, v~ =v~). Express-
ing in terms of I =lnb, we arrive at the recursion relation
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—v =v z —2+ u
R R 377

dl II-
II 32

(18)

and similarly

—R —R( (19)

=X (yz —1) .
dl

(20)

D—=D [2 —27—(d —1)P—1 j .
dl

(21)

(iu) RG+ows, axed points and exponents In . the ther-
modynamic limit (b ~ ~ or I~ 00), we expect the scaling
behavior to be described by Eq. (11). If this expectation
is true, then the renormalized parameters, such as v
should be dimensionless in the hydrodynamic limit. This
for example, implies (d/dl)V

~~

=0 as i~ Do, and the ex-
ponents may be solved at the infrared fixed point (1~ ~ )

of the ffow equations (18)—(21).
Since Eqs. (19)—(21) are correct to all orders, we im-

mediately obtain the exact exponents,
R( )

II

1+(9m./64)(u /e )x
~~

with x = loe 1

II

Above the upper critical dimension of d, =4, the non-

linearity is irrelevant and we recover the ideal scaling
with z0=2, go=(2 —d)/2, and /~= 1. Below d =4, there
is a stable fixed point at u *—:u (l~)=(64/9m. )e to
first order in a=4 —d. At the fixed point u *, the scaling
of the surface is exactly described by the exponents in Eq.
(22).

It is important to realize that although the fixed point
u * is known only perturbatively to O(e), the scaling ex-
ponents in Eq. (22) are exact as long as the parameters v~,

D, and A. are finite. The exactness of these exponents fol-
lows from the.nonrenormalizability conditions on v~, X,
and D which remove anomalous dimensions to all orders.
This point ean be illustrated by a direct examination of
the correlation function C(x, t). We have already shown
that the parameters D, A, , and vj are not changed by the
inclusion of nonlinearity. The form of v can be obtained
from integration of the fiow equation. From Eq. (23) we
obtain the renormalized coupling constant:

1 —d 6 3X=
7 —d 7 —d 7—d

(22)
to leading order in e. The renormalized surface tension is
now obtained by integrating Eq. (18) as

Substituting the above equations in the recursion relation
of Eq. (18), we obtain the fiow equation for the effective
interaction parameter to first order,

9m u(x )= x' '= x' '= x' ' 1+ —x'
II II II II II II II II 64 ~ II

' 1/3

d —R -R—u =u (4—d) — u
9~ R

dl 64
(23) Inserting vill (XII) DR =D AH=A. , and viR= vl into Eq. (11)

results in the renormalized correlation function

C (x, t)=—1+ —x'D 9mu
v 64m

II

—1/3

~2—dF II
vt

II 2 64 II

xll

' 1/3 1/2

1+9
vl. xll . 64 e II

' 1/6

(24)

Comparing the above with Eq. (11), we immediately re-
gain the exponents of Eq. (22) in the hydrodynamic limit

xll
—+ 00. It is now apparent that the higher loop correc-

tions will only change the coefficient in front of x
~~

(i.e.,
the fixed point value and the detailed shape of the scaling
function F) but not the exponents themselves. It is also
worth noting that the diagrams which contribute to order
k ~~k f in the propagator G (k, co) and to order k

~~

in the
noise spectrum D (k, co) also amount to a correction to
the coeScient of x

II
and do not modify the leading sealing

behaviors of Eq. (22).
Finally we point out that the roughening exponent g as

given by Eq. (22) is negative for d ) 1. Since the width of
the interface is characterized by co-E,

+~~, then y&0 im-

plies that the surface is asymptotically plat for d ) 1. This
provides a self-consistent check of the '*Hat surface" as-
sumption made at the beginning of this analysis. The as-
sumption is no longer valid below 1+ 1 dimensions.

C. Scaling of Auctuations

The exponents y, z, and g are the fundamental scaling
dimensions of the system; other quantities can in princi-

pie be calculated from them. In particular, we are in-
terested in the spatial and temporal correlations of ob-
servables such as the transport current and the rate of en-

ergy dissipation. In the following, we show how the spa-
tiaiand temporal fluctuations can be related to the funda-
mental dynamical field h.

1. Spatial structures

To probe the spatial structure of our fluctuating sur-
face, we need to calculate its response to an infinitesimal
perturbation as follows. We start with some initial height
configuration ho(x), add particles randomly as described

by g(x, t), and obtain a series of height profiles h (x, t).
This is followed by another run starting from the same
configuration ho(x), and adding particles with the same
randomness q(x, t) except for a small difference 5r)(x, t ).
The surface profile obtained the second time is h'(x, t)
and is different from the first by an amount
5h(x, t)=h(x, t) h'(x, t) The response f.un—ction is now
defined by 5h (x, t) = fdx'dt 'R (x, x', t, t ')5q(x', t '), and

can be calculated by substituting h +5h for h and g+ 5q
for g in Eq. (7),
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—(5h)= „B,(5h)+ V (5h) —AB,(h5h)a

——8 (5h) +5g .2
II

To linear order, the response function is represented by
the following shorthand:

R(*,t) = ——
iiBii

— P' +A,Bish +A,h Bii (25)

5h (x, t) = t "i'f
X X

(26)

Note that the above result is another expression of the
conservation condition. Not surprisingly, the influence
of the perturbation spreads as t' perpendicular to the
driving direction and as t' '& t' in the downhill direc-
tion. In 2+1 dimensions 1/z =5/6, and the effect of an-
isotropy is quite dominating. (This is the reason for
choosing narrow strip geometries in the simulation of 2D
sandpiles in Sec. II B.} From Eq. (26), we can also calcu-
late the size distribution of the sites influenced, the fractal
dimension of the influenced region, etc. However, the re-
lation of these quantities to the fundamental dynamical
field h is model dependent and will not be pursued here.
As mentioned in the Introduction, transport systems such
as the sandpile automata are more suited for the study of
temporal fluctuations which we turn to next.

2. Temporal fluctuations

To make comparison with the simulation results of
previous sections possible, we compute the power spectra
for the output current J(t) and the energy dissipation
E(t}. Obtaining the scaling behaviors of these global
quantities is often not as straightforward as it naively ap-
pears. Here we shall only sketch the result by using naive
scaling analysis. A careful derivation is carried out in
Appendix B. The output current measured in Sec. II is
the integrated local current j(x, t) at the boundary

x~~ =Lt~~, i.e., J(t)= fd 'xj j(L~~, x~, t) T for a general

(d +1)-dimensional system. Using Eq. (6) for j and not-
ing that in d (4 scaling is dominated by the h part of
the current, we obtain

(J(t)J(0)),=f d 'x~d" 'xI (h (x, t)h (x', 0}},
L d —1t [4g+(d —1)g]/z

In Fourier space the linear response function with A, =O is
the free propagator Ro(k, to)=1/( iso—+v~~kf +v~kj ).
With A, WO, since z & 2 as found in the preceding section,
the term A,B~~h-xr~~ '=x~~ ' in Eq. (25} dominates over
the BII term in the hydrodynamic limit. The large-
distance scaling properties are therefore governed by

R(k, co) = f—1 N N

k' k'
II

For a point perturbation 5'(x, t) =5(t)5 (x), the response
scales as

where we have used (h (x, t)h (0,0)),—(h (x, t)h (0,0) ),. (The subscript c denotes the cumu-
lant or connected part of the correlation function, i.e.,
measures fluctuations around the average. ) The Fourier
transform of the above correlation function yields the
power spectrum

E(t)= fd "xTj(x,t)= f d xhz(x, t) . (28)

We see that the total energy dissipated at each time is just
the sum of local transport activities, precisely the quanti-
ty monitored in the simulation. The energy correlation
function is again calculated using the basic correlation
function (hh ), giving

(E(t)E(0)),=f d xd x'(h (x, t)h (x', 0)),

L dt [4y+(d —1)(+1]/z

Fourier transforming the above then yields the power
spectrum for energy dissipation,

Sz(to) -L "to (29)

with aE =2/z.
In the above calculations, simplifying assumptions re-

garding the form of the correlation function ( h h ) were
implicitly used. We explore more general scaling forms
in Appendix B and find that 1/z & aE & 2/z, while
aj=1/z is not affected. The numerical values of these
exponents in various substrate dimensions are listed in
Table II. For comparison, we have also listed in Table II

TABLE II. Numerical values of exponents obtained by using
the dynamical renormalization-group method. Also included
are exponents a' ' obtained from the linear theory.

1

2
—' —1

3
2

1

2
3
4
2
3

2 4
3 3

6
5

1

5
3
5
5
6

5 5
6 3

1 —2

SJ(~)—Ld

with aJ =1/z.
A similar calculation is carried out for the rate of ener-

gy dissipation E (t). Here we start from the total "poten-
tial energy" of the system, U(t) = ,' fd —x[H(x, t)],
where H(x, t) =Ho(x)+h (x, t) is the time-dependent
coarse-grained landscape of the sandpile. The energy dis-
sipation rate is simply obtained from the loss of potential
energy, i.e.,

E(t)= — = — d xHo(x)
dU d Bh

dt dt

where only the leading order term in h (x, t) is kept. Us-
ing the equation of motion, Eq. (7), and integrating by
parts, we obtain
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the exponents az ' and aE' that result from the linear
diffusion equation where Vh is used as the local current j
(see Appendix B). An earlier investigation of 1/f noise
in linear diffusive systems can be found in Ref. [35].

3. Comparison to simulations

From Table II we see that the exponent aJ =1 in d = 1

agrees with the numerical simulations of Sec. II. But a
direct comparison of the exponent aE has not been possi-
ble, although the observed aE is at the edge of the al-

lowed values according to Appendix B. We also observe
that the exponents of the linear equation in Table II are
not applicable to aE or aJ. It is surprising that similar
values are found numerically for the two exponents, since
J is a measure of surface fluctuations while E is a measure
of bulk fluctuations. This suggests a strong correlation
between fluctuations in the bulk and at the surface. One
possible explanation is that the size dependence of the mi-
croscopic cutoff (i.e., lo-L'~ ) in the numerical model
drastically reduces the effective size of the system. It
forces the various parameters appearing in the equation
of motion, Eq. (7), to be L dependent. This in turn may
cause anomalous scaling of spatially averaged quantities
(see Appendix B) and hence the anomalous power spec-
trum for global energy dissipation. Also, this would

modify the L dependences of the power spectra, making a
direct comparison to theory difficult.

Carlson et al. [36] have also looked for a diffusion
equation to describe transport in sandpile automata in
the single-avalanche region. For a variant of the model
(the two-state model), they found that the hydrodynamic
behavior is described by a diffusion equation with a singu-
lar diffusion coefficient. They also provide numerical evi-

dence suggesting that the 1D sandpile automaton investi-

gated here may be described by singular diffusion. Does
this singularity reflect the anomalous size dependence of
"microscopic"' parameters discussed above, or is it a
reflection of the breakdown of the linear diffusion equa-
tion due to relevance of nonlinearities (since z (2 the
nonlinear equation clearly exhibits superdiffusive behav-
ior)? We have not succeeded in making a clear
correspondence to this work. As analysis in this section
indicates, the behaviors of the sandpile automaton (in the
interacting avalanche region) are at least consistent with
the expectations of a noisy driven-diffusion system. How-
ever, the task of constructing a definitive macroscopic
equation to describe each region of the sandpile automa-
ton remains incomplete.

IV. GENERIC SCALE INVARIANCE

A. Origin of scale invariance

In this section we shall attempt to formulate a general
approach to open and extended dynamical systems exhib-
iting scale-invariant fluctuations. As many deterministic
dynamical systems with few degrees of freedom are
known to exhibit nontrivial chaotic behavior, it is irnpor-
tant to emphasize the infinitely many degrees of freedom
in extended systems. The successful statistical approach

to near equilibrium critical phenomena [5] demonstrates
that when correlations extend over large spatial intervals
details of the interactions at short distances become ir-
relevant. It is thus appropriate to apply a coarse graining
to eliminate such details, and to focus on averaged behav-
ior. Let us assume that after such averaging fluctuations
in the system of interest are described by a field h (x, t),
e.g., giving the height of an evolving "sandpile" around
some equilibrium configuration. We now outline the
reasoning that leads to constructing an equation of
motion for h (x, t) [37].

Over sufficiently long time scales, inertial terms (e.g.,
B,h) are irrelevant in the presence of dissipative dynam-

ics, and hence the evolution of h is governed by

B,h =F[h]+ri(x, t) . (30)

B,h =V +Vg(x, t),=2 a

For systems evolving according to a Hamiltonian %[h],
the deterministic force Fcan be obtained from the deriva-
tives of %, and the stochastic noise ri(x, t) is related to
thermal ffuctuations [13]. However, for an open system
undergoing an irreversible evolution, there is no apparent
&[h], and finding F [h] is nontrivial. In analogy to the
Landau theory of phase transitions, it is reasonable to ex-

pect that all terms compatible with symmetries and con-
servation laws should be present in the equation of
motion.

Apart from a trivial constant, the first term in a local
expansion of F [h] is —h /r. (Since, by fiat, we consider
small fluctuations around a stable state, the sign of the
linear term has to be negative. ) Such a contribution
clearly introduces a time scale ~ in the problem and des-

troys any self-similarity of temporal fluctuations. One
mechanism for getting rid of such a term is to tune an
external parameter until 1/~ accidentally vanishes: this
is clearly externally imposed and incompatible with the
idea of SOC. A second mechanism is the one used in Sec.
III B, where we pointed out that in the sandpile simula-
tions the quantity f d xh(x, t) is conserved during the

deterministic evolution. Such a conservation law is not
compatible with a linear term in the expansion, and thus
quite naturally removes the time scale ~. Actually, even a
conservation law is not necessary: A third mechanism
that removes —h/~ is a translational symmetry in h. If
the system is invariant under the transformation
h(x)~h (x)+ho, then again there will be no characteris-
tic time scale. This last mechanism accounts for the self-

similarity of models of interface dynamics [8,34].
We have thus established that symmetries or conserva-

tion laws can naturally eliminate the time scale ~, and
lead to self-similar temporal fluctuations without any tun-

ing. However, as pointed out by Grinstein, Sachdev, and
Lee [38], the absence of a time scale does not necessarily

imply the existence of self-similar correlations in space.
The linear diffusion equation with conserved noise and
the Ising model with conserved magnetization provide
clear examples. Both problems take the standard
Langevin form
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for conservative dynamics [13]. With (ri(x, t)g(x', t'))
=5"(x—x')5(t —t'), the spatial correlations are governed
by the steady-state distribution P[h]-exp[ —&]. Since
a generic & will not be at its critical point, the steady-
state correlations in space will not be self-similar, but
characterized by a correlation length. The temporal
correlations still decay algebraically; e.g., for the Navier-
Stokes equation the velocity-velocity correlations have
the well-known t tail [33]. It seems appropriate to
also exclude these situations from SOC phenomena as the
coupling of spatial and temporal self-similarity was one of
the original motivations [6]. Actually it has been shown
[38,39] that anisotropy or other mechanisms that destroy
detailed balance may be sufficient to render the spatial
correlations also self-similar. In view of the above, we
note that our original statement [29] that "a conservation
law is both necessary and sufficient for SOC," which was
formulated within the context of sandpiles, is not always
valid in a more general framework.

A novel feature of Eq. (30) is that while F [h] may be
conservative, the noise q need not be. Such a condition
leads to a new class of equations, outside the classification
of models A (both F and ri nonconservative) and B (both
I' and ri conservative) of Hohenberg and Halperin [13].
Are such equations internally self-consistent, or will the
nonconservative noise generate a nonconservative term in
I' under renormalization? Perturbative analysis, as in
Sec. III B, indicates that as all nonlinearities in I origi-
nate from V J, all terms generated by RG will be propor-
tional to V and hence conservative. Another conse-
quence of this statement is that the nonconservative noise
itself will not be renormalized under RG. As demon-
strated in Sec. IIIB such nonrenormalization always
leads to an exponent identity for this class of equations.
More recently such equations have been proposed for in-
terface growth in which the adsorbed particles undergo
conservative rearrangements on the surface [40,41]. Not
surprisingly such an exponent identity is recovered for
these systems [42]. An earlier example is found in the
study of Burgers equation with nonconservative noise by
Forster, Nelson, and Stephen [33]. Thus, in this formula-
tion, SOC appears as a characteristic of the deterministic
dynamics (F) of the system, independent of the external
driving force g.

least general; its existence was postulated based on simu-

lation results. Also, several other investigations of SOC
have focused on models where one or more of the above
conditions is clearly not satisfied. To show that these
differences can indeed lead to different universality
classes, here we shall construct their corresponding con-
tinuum theories. We will focus our discuss on conditions
(a)—(c) assuming that (d) is somehow satisfied. For sys-

tems that do possess an intrinsic time scale in the motion
of the gradient, the following discussion only applies up
to that time scale during which (d) is still valid.

1. Local violations of conservation laws

2. Variations in noise

Restricting ourselves to anisotropic transport process-
es, there are a number of possible variations to the exter-
nal input of noise. As shown in Sec. III B, the simplest
nontrivial equation of motion is

Bh 2 A,=vV h ——8 (h )+ri(x, t) . (31)

If the noise is conservative, i.e.,

The importance of the local conservation law has been
tested directly in the simulations of Manna, Kiss, and
Kertesz [43]. They found cutoffs in the distribution func-
tions once the conservation rule was broken by choosing
a transfer ratio different from unity. However, they also
noted that there are no cutofFs in the simulations if the
transfer ratio is allowed to fluctuate around unity. In a
continuum formulation of such a model, the stochastic
breaking of conservation law can be modeled by a fluc-
tuating mass term, i.e., by g(x, t)h, where g(x, t) is a ran-
dom variable of zero mean. It is easy to verify that as
long as y (0, such terms are irrelevant and do not change
the hydrodynamic behavior. In fact, the numerical simu-
lations [43] do indicate a change of scaling of the
avalanche distributions with and without such local fluc-
tuations. However, these scaling functions refer to region
I of Sec. IIB, where the hydrodynamic analysis is not
applicable. An important point is that such stochastic
violations of the conservation law play the same role as
the random external addition of sand, and do not destroy
scale invariance.

B. Some other universality classes of transport
(ri(x, t)r)(0, 0) ) =2DV 5 (x)5(t), (32)

We now return to some other transport processes with
generic scale invariance. In Sec. III A, we constructed a
model describing transport processes that (a) are locally
conservative, (b) have a unique transport direction, (c)
have a nonconservative uncorrelated noise in the bulk,
and (d) have a uniform and stationary gradient set up by
the material transported (e.g., fiat average surfaces).
Given the above conditions, the large-distance, long-time
scaling behavior found in Sec. III B is universal, i.e., the
"hydrodynamic" properties should not depend on the mi-
croscopic details of the system. However, alterations in
any of the above conditions can lead to different scaling
behaviors; indeed it can even destroy criticality.

Of the four conditions listed above, (d) is by far the

then a change in scale x ~bx (accompanied by
t~b't, h ~b~h) leads to the following transformation of
the parameters:

In the absence of nonlinearity (i.e., A, =O), the equation
is made scale invariant upon the choice of zp=2 and

pp = d /2. A nonlinearity added to this scale-invariant
equation has a dimension y& =yp+zp —1=1—d/2. For
d )2, a small nonlinearity is irrelevant, while below the
upper critical dimension of d, =2, it is relevant and
grows under rescaling. This is actually the problem of
forced particle difFusion studied by Janssen and
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The free exponents (for A. =O) are in this case z0=2,
pp = 1 d /2, giving the nonlinearity a dimension

yq =go+zo —1 = =(3—d) /2, and hence an upper critical
dimension of d, =3. This agrees with the upper critical
dimension found by Dhar and Ramaswamy [25] for a
similar model with input along an edge.

A somewhat different example involving noise from the
boundary is provided by the transport of vortices through
a piece of type-II superconductor [44]. Recently, this
problem was studied numerically by a simple lattice-gas
simulation [45]. Instead of a noisy input current at the
boundary, the stochasticity in this problem arises from
the fluctuation of the density field itself at the boundary.
It can also be analyzed in the spirit of the continuum field
theory [46] and an upper critical dimension of d, =1 is

found. It can be shown that the fluctuation in the total
number of vortices in the sample is always 1/f. Yet
another example is provided by sliding charge-density
waves.

So far, a noise term was used to mimic the fluctuations
in external inputs. But there are also situations in which
the stochasticity is generated by the deterministic dynam-
ics itself. One example that bears resemblance to the
sandpile problem considered in Sec. III is that of water
running down an inclined plane. When the inclination
angle is small, water flows smoothly. But if the inclina-
tion becomes too steep (i.e., exceeding a threshold), the
flow becomes stochastic [47]. For small fluctuations in

the thickness of water layer h (x, t), one obtains the fol-
lowing deterministic equation of motion:

a, h = —v, a', h —v,a'„h—Xa.(h'} . (33)

Equation (33) is known as the Kuramoto-Sivashinsky
(KS) equation [48]. It is derived in this case simply from
the Navier-Stokes equation with the proper boundary
conditions. Since the KS equation is linearly unstable for
long-wavelength modes (negative surface tension), ran-
domness in initial conditions is amplified, resulting in the
stochastic behavior of water flow in the hydrodynamic
limit. Zalesky [49] further shows that the stochastic be-
havior exhibited by the KS equation is actually consistent
with the Langevin equation (31}with a conservative noise
as in Eq. (32). Given that the dynamics is stochastic, Eq.
(31) is of course the simplest equation consistent with the
symmetry and conservation law requirements of the wa-

ter flow problem (since they are the same as those for the
sandpile problem considered). However, because there is

Schmittmann [31]. The exponents found are similar to
those in Eq. (22) but with d replaced by d —2.

In another class of driven transport systems the input
is not from the "top" of the box, but from the edge oppo-
site to the open (exit) end. In the simplest scenario, such
a process is described by Eq. (31), with a noise spectrum

(p(x, t)p(x', t') & =2D6(xi')5(xI )6 '(xi —xi)5(t —t'),
where the delta functions 5(x~~~)5(x~~) ensure that noise
acts as a source only along the input edge. In the naive
scaling analysis the parameters transform as

v~bz —zv D ~bz zy —d —ID A
~b++z—

no external source (of water) in the problem, the internal-
ly generated noise can at most be conservative as de-
scribed by Eq. (32).

(q(x, t)g(x', t')& =2D5 (x—x'},
which is explicitly time independent. Similar scaling
analysis yields yz =(6—d)/2 giving an upper critical di-
mension d, =6 for this process. In general, for spatially
and temporally correlated noise of the form [34]

(q(x, t)q(0, 0)& —~x~'t' "~t~" ',
the upper critical dimension for the nonlinearity in Eq.
(31) is d, =4+2p+48.

For models of discretized sand units [30], Toner [50]
has included a quenched disordered term appearing as
cos[Gh +P(x, h)] in the current, and finds that such dis-
order removes the roughening transition, always resulting
in a rough interface.

4. The eQect of isotropy

Transport systems do not always have to be driven in
one specific direction. As an example, consider the traffic
problem in a big city: Assume that the total number of
cars on the road is on average constant, but let there be
random local sources and sinks (e.g., parking lots). The
equation of motion is again given by Eq. (5), where h is
now the density of cars and g describes the randomness.
What is the form of j if the cars wander aimlessly? Since
the problem is now isotropic, the current operator j can
only be constructed from combinations of V and h's.
Leading terms are j=—vVh+(A, /2)V(h ). The first
term represents random wanderings of cars (diffusive
movement). The second term mimics a cooperative
crowding effect. If we write the above current as

j=—v 1 ——h 7'h,
v

it becomes apparent that the second term slows down the
wandering of cars if local car density becomes high, i.e.,
it is more difficult for cars in traffic jams to get out. In-
serting the current operator into the conservation law in
Eq. (5), we obtain

z ~ z z

at 2
=vV h ——V (h )+rl(x, t) . (34)

This is yet another nonlinear diffusion equation. It looks
somewhat like the equation that describes the evolution
of growing interfaces [8], but is in fact quite different be-
cause it does not have the symmetry h ~h +const.
Naive dimensional analysis gives an upper critical dimen-
sion of 2 above which small nonlinearity is irrelevant. As
mentioned in Sec. IIID, there is an exponent identity

3. Quenched randomness

Another recurring situation is that the medium
through which a transport process takes place has
quenched randomness. Such a process is described by a
"noise" of the form
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z —2g=d due to nonrenormalization of a nonconserva-
tive noise spectrum (ri(x, t)g(0, 0) ) =2D5 (x)5(t). How-
ever, the parameters v and A, do get renormalized and the
problem becomes quite complicated. Equation (34) can
also be coupled to different types of noise spectra as in
the preceding section, leading to new universality classes.

V. CONCLUSIONS

Since its introduction, self-organized criticality (SOC)
has captured the imagination of many physicists, and led
to an explosion of activity and publications. In this paper
we have only referred to a small fraction of these studies
which have more closely corresponded to our line of in-
vestigation. The common elements in most such studies
include a weak external perturbation, a dynamical evolu-
tion process, and an eventual response that can be fitted
to a power law. The diversity of systems studied makes a
quantitative comparison impossible. We shall instead
discuss some possible qualitative similarities in a number
of such systems.

The majority of studies of SOC have involved numeri-
cal simulations of simple cellular automata. There are
fewer experimental studies; the clearest examples appear
in magnetic domains [51,52]. Experiments have also been
conducted on the flow of sand under a variety of condi-
tions: uniform addition to a drum [12], rotating a closed
container [53], grain-by-grain addition to an evolving
sandpile [54]. This last situation most closely mimics the
cellular automaton simulations: while smaller avalanches
form a self-similar distribution, there is a cutoff set by
large events involving the displacement of the whole top
layer. As discussed in Sec. IIC, this behavior is some-
what similar to the discharge events observed in the
simulations. However, the actual situation is probably
more complicated as it involves inertia1 effects, flow of
sand in the bulk, etc. These experiments have resulted in
a look at the problems of flow in granular media. A
variety of formulations have studied the instabilities
[55,56] and phase transitions (segregation of different size
grains) [57] in such granular flows.

Possible applications of SOC to earthquakes have also
attracted considerable attention [11,58—62]. Seismic data
indicate that the distribution of earthquakes versus their
energy release indeed follows a power law for at least a
large portion of the observed earthquake magnitudes
[63]. Models of earthquakes usually start with a network
of masses connected by springs (representing one plate in
a fault), and subject to nonlinear friction forces. One is-
sue of debate is whether to model the instabilities of a sin-

gle fault, or the evolution of faults with time. For a sin-

gle fault there is an excess of large earthquakes, which
like the discharge events of the sandpile reset the
configuration of the whole system. Such system-wide
events thus appear to be a characteristic feature of many
systems with threshold instabilities.

There has also been some progress in obtaining exact
results pertaining to sandpile automata. Dhar and colla-
borators have obtained several exact results regarding the
number of states, their evolutions, and distribution func-
tions in simple automata [25,26,64]. Carlson et al. have
focused on the behavior of trapping sites [19] (the stop-

ping points for avalanches), and have also obtained singu-
lar diffusion equations for transport [36]. More results
along these lines have been reported by Kadanoff et al.
[65]. These results all pertain to the single-avalanche re-
gion described in Sec. IIB, which is perhaps the most
striking aspect of SOC.

There is emerging consensus that simple superposition
of single-avalanche signals will not lead to 1/f noise

[20,21,66], one of the initial motivations of SOC. Howev-

er, as we demonstrated in Sec. II B, at finite driving force
the avalanches overlap, and the resulting output signals
can exhibit 1/f noise. Also, due to their overlap, in this
regime it is no longer possible to identify single
avalanches. We suggest in Sec. III that a continuum "hy-
drodynamics" description may be appropriate to this re-
gion. The idea that such noisy diffusion processes may be
responsible for 1/f noise is not new [35]. As these ideas
could not quantitatively account for the magnitude of
such noise, for example in metals, they were abandoned
in favor of other explanations, such as activated process-
es. It is only more recently noted that such diffusionlike
equations quite generically result in scale-invariant spa-
tial fluctuations [29,38,39]. Conversely, while the spatial
correlations in systems with continuous symmetry have
been known for a while, more recently a number of au-
thors have studied 1/f noise in such a system (a grow-
ing interface [67,68]).

In the approach of Sec. III, the system acts as a com-
plex filter. White noise is used as an input to the system,
while the output current is found to be correlated. (Also
snapshots of the system will indicate the presence of spa-
tial correlations. ) More recently, Bak has emphasized
that SOC may be present in the absence of any stochastic
input; the example used in a sandpile that is very slowly
tilted [60]. In this case the input is a very small dc
current, as opposed to white noise. In a continuum for-
mulation instabilities are then necessary to magnify the
small dc input. The situation is thus quite similar to the
Kuramoto-Sviashinsky equation described in Sec. IVB.
It also bears some resemblance to turbulence in the iner-
tia1 regime: In a uniform flow instabilities originating
from the boundaries continue to produce self-similar
correlations over an intermediate range of wavelengths.
However, there is a crucial difference between turbulence
and the cellular automaton Bak et al. introduced as the
latter requires an infinitesimally small driving force.

But even a small (but finite) dc input will eventually
lead to an overlap of avalanches in a large enough sys-
tem. If we insist upon distinct individual events that fol-
low a self-similar distribution as the main signature of
SOC, we must limit to small systems, or scale the noise
appropriately, as in Sec. II A. Detailed analytical compu-
tations of the distribution functions in this single-
avalanche regime are indeed dificult, but can one at least
identify the underlying principle of scale invariance? We
argued in Sec. IV A that symmetries or conservation laws
were responsible for the lack of time scales in the prob-
lem. Is it possible that the single-avalanche regime is
governed by some other principle, and that the very re-
quirement of distinct events leads to SOC? In the ap-
proach of Sec. III, this seems unlikely, as the presence or
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absence of the stochasticity cannot account for the lack
of characteristic scales. However, Bak, Chen, and Creutz
have claimed that such arguments may not be applicable
[69]. They provide the "game of life" as a counterexam-
ple that shows self-similar scaling in the absence of any
apparent conservation laws. But, later simulations on
larger systems indicate the presence of a large cutoff
length for scale invariance [70]. More recently, Feder
and Feder [66] studied another variant of the sandpile au-
tomaton in which the conservation law was weakly bro-
ken. They did not observe any apparent cutoff in the
scaling of avalanche sizes. Are the again limited by the
finite-size effect as in the game of life? More extensive
simulations are certainly needed here before drawing any
conclusions.

Further work can indeed establish whether or not con-
servation laws and symmetries can account for all situa-
tions in which scale invariance is observed. Regardless,
even the simple sandpile cellular automaton exhibits a
variety of scaling behaviors that challenge our under-
standing. Indeed this very variety, and range of possible
modifications, makes the problem complicated to attack.

Further progress may require a more narrow and specific
definition of SOC, and the particular behavior that needs
to be described for the sandpile.
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APPENDIX A:
PROPAGATOR RENORMALIZATION

The first-order correction to G"(k,co) is
Go(k, co)X(k, co) where X is calculated from the diagram
in Fig. 18(a), as

r 2
1 1

X(k, co) =4 — 2D d qdiLc
ll(kll/2

—qll)'+ (k /2 —q. )' —t( /2 —P)

(co/2+tu) +[v( li/ +qll) + ~(k /2+q ) ]

The hydrodynamic limit of co~0 and k&~0 limits can be taken right away. After integration over the internal fre-

quency p, we have to leading order in k
~~

X(kll )

d —5 / d d —2[(1+ 2) —2+2(1+ 2) —3]
3 ,

'
d' f, qllqll f »

0

Note that the above integral is infrared divergent for
d (4. This apparent divergence signals the relevance of
nonlinearity below four dimensions; it is this type of
divergences the renormalization procedure is designed to
handle. For now we give the diverging integral an in-
frared cutoff, kt~

—+0. In Sec. III B we show that it is only
necessary to evaluate the expression for X(kll ) to leading
order in a=4 —d, giving the result

critical dimension d, =4. Afterwards, we consider exten-
sions to the nonlinear system in Eq. (7).

If the nonlinear term in Eq. (7) is neglected, then we
have a linear Langevin equation with a local current
j' ~(x, t) =vP'h. As shown in Sec. III C, the "energy dissi-
pation" of the system is the sum of local current, i.e.,
E (t) = f~d xj(x, t). For the linear equation, the correla-

tion function of j is easily obtained in Fourier space,

vk
g(k )=—

4
2g) 2S~ ) k

~)

v v (2m)
II

Io)» k2 2

Jj (k' )=
z 4 2v k +co

which leads to Eq. (15).

APPENDIX B: SCALING OF GLOBAL QUANTITIES

In this appendix, we take a close look at the general
scaling behavior of global quantities such as the output
current J ( t) and the energy dissipation rate E ( t) moni-
tored in Sec. II B. We shall first study the case of linear
diffusion, which describes the system at and above the

To obtain the power spectrum, naively one might expect
Sz '(co)=C'. '(k~0, co). This would generally be valid if
the system were insensitive to the boundaries (say closed,
with periodic boundary conditions). However, it gives a
null result in this case since j' ' is a perfect derivative.
What we should do instead is to take the open boundary
condition of the problem properly into account. A more
algebraically amenable alternative is to consider the sys-
tem as being a finite portion (of volume L ) of an infinite
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sin(k„L)=L d g f dk„C"(k,co) .
n=1 k„L

The asymptotic behavior may be obtained by approxi-
mating

n=1
f dk„

sin (k„L} = f [1+(kI.)']'

Using Eq. (81), we find Szp'(u =rpL2/v)=DLd+2IEp'(u),
where

I(0)— d" 2

(1+y2)dy4+u2

In the region of validity and interest u »1, the above in-
tegral is

I(0) 1 '' d dd
+

u2 p (1+ 2)d &1/2 2d+2

system. For frequencies above the finite-size cutoff
co, =vL, this simplified treatment is not expected to be
different from a rigorous treatment with the open bound-
ary condition [71].

The simplified treatment amounts to writing the power
spectrum as

cf L I

S (co)= g f dx„f dx„' f dk„e " " " C .(k, co)
0 0

linear problem in Eq. (7). As explained in Sec. III C the
local current operator is j(x,t)=h (x, t). In accordance
with the homogeneous scaling hypothesis, the correlation
function takes the form

COk
C..(k(),ki, co) —k(( F

k k'
ll ll

(B2}

where the exponents g and z are those given in Eq. (22).
The other exponent, a is obtained by requiring
C"—(h h ) —(hh) . This gives a=4'+(d —1)g
+1+z =2, using exponent values in Eq. (22). In the
naive scaling analysis carried out in Sec. III C, two impli-
cit assumptions were made: (a) The power spectra are ob-
tained from the k~0 limits of the correlation function

CJJ; and (b) C(k —&O, co)-co ' ' independent of k. We
shall now carefully examine these two assumptions.

Since assumption (a) is not valid for the linear equa-
tion, we will again treat our system as a finite portion of
an infinite one. We next assume that the scaling function
F(x,y) has the generalized limiting behavior
F(x~O,y —+0)=const, F(x~ao,y)~x ' ~, and
F(x,y ~ 00 )~y . This introduces a new unknown ex-
ponent b. Assumption (b) corresponds to the special limit
b =a/z.

Given the form of the correlation function in Eq. (B2},
and the prescribed limiting behavior, the power spectra
can be computed as before. The dominant contribution
to the total current is

For d ~ 2, the first integral is convergent, yielding
IE '(u)-u, while for d &2, the leading contribution is
u ' +2'~ . Hence, the 1/f-noise exponent for "energy"
1S

1/z u &/zS (u)- d d"
y~~ yi d, y

-u" '' 1fbz —a& —1, (B3)

(0) d+2
aE min '2,

2

A similar calculation can be carried out for the total
output current J(t), the other quantity monitored in Sec.
II B. Summing up local currents at the open boundary as
described in Sec. IIIC we have J(t)= JLd 'x J(x~~
=L,xi, t). The power spectrum for J is again computed
using the correlation function in Eq. (Bl) as

Sz' '(u =coL'/v)=DL—f dy~~ f d 'y,
2 d2 d —i

Pll +g
(yii+y }+"

In the limit u » 1, the leading divergence of the above in-
tegral is

1/z u&/'z

x
—b

where u=coL' is the reduced frequency. Hence the
1/f-noise exponent for total current is
uz =(a —1)/z =(7—d)/6 (since a =2). Note that this re-
sult is independent of the unknown exponent b. Also it is
the same as the one obtained in Sec. III C using the most
naive scaling analysis, thus explicitly demonstrating that
the boundary effect is negligible in the hydrodynamic lim-
it, and that assumption (a} is valid. Similarly, the leading
contribution to the power spectrum of energy dissipation
1S

2

p yl~
p yi(1 ( 2)d —i 2 if 1&bz —a & —1 . (B4)

We find the analogous exponent for the output current to
be az '=

—,
' in all d. The exponents derived here are in

agreement with those found earlier for the case d=3 in
Ref. [35].

With the behavior of the linear theory in mind, we now
proceed to compute the power spectra for the full non-

Note that if bz —a =0 as in assumption (b}, then
aE =b =2/z is again the expression obtained from naive
scaling. However, this is not necessarily the case.

We now discuss the range of values the exponent b may
take. This exponent describes spatially averaged behav-
ior of the correlation function, i.e., C(k ~0,pi)
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~k"' 'co . For systems with C(k~0, co)~0, we must
have bz —a &0; an example is the linear problem ana-
lyzed at the beginning of this appendix. If we consider
instead the height-height correlation function, the k =0
mode of Eq. (7) reads

Bh =g(k =O, t),
Bt k p

since the deterministic dynamics is conservative. This
gives Cst, (k =O, co) =co, and ba —z =0. To determine b
for C, we examine the dynamics of j(k=O, t)
= f dxh (x, t) and find

= jdx
k=p

2

+ri(x, t)h (x, t)
Bh

which is generically nonvanishing. The two integrals ac-
tually appear to diverge barring miraculous cancellation.
(It is interesting to observe here that the k =0 mode of h

diverges even within the linear diffusion theory. ) Hence,
even though we have not been able to compute the nu-
merical value of the exponent b, we can put an upper
bound b & a/z =2/z. Also from Eqs. (B3) and (B4), we
see the condition bz —a ) —1 is needed to avoid infrared
divergences. Putting these together, we have
1/z (aE 2/z.
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